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Abstract The coupled vibration–dissociation–recombination process has been exam-
ined for diatomic molecules and atoms. The relationship between the concentrations
of reagent molecules, product atoms and the instantaneous dissociation rate is estab-
lished in an analytical form. A very accurate approach similar to the technique of
uniform approximation is used to solve a relevant nonlinear differential equation. An
exact analytical solution to the master equation is obtained for the model of strong
collisions.

Keywords Master equation · Dissociation–recombination process · Reaction rate ·
Uniform approximation

1 Introduction

The time-dependent vibrational relaxation of diatomic molecules dissociating and
recombining in a background of inert atoms has long been a popular topic of the-
oretical investigations [1–5]. Due to the progress in computer facilities and the
accessibility of extensive information on realisticmolecular interactions, the numerical
treatments of complicated three-dimensional models of molecular collisions includ-
ing dissociation–recombination events have become feasible. Nevertheless, analytical
approaches provide a clear insight into the process under study, allow general conclu-
sions, and correctly raise the problems for numerical modeling [6,7].
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The purpose of this paper is to call attention to several aspects of the relationship
between the concentrations of reagent molecules, product atoms and the instantaneous
dissociation rate. A mathematical connection between these time-dependent quanti-
ties will be ascertained using the method of standard equation. The relation will be
studied for the case where the simultaneous dissociation–recombination process takes
place. As shown below, the time-dependent reaction rate is also given in terms of
the instantaneous dissociation rate as a simple analytical formula. When one of these
quantities is determined experimentally, the theory developed makes it possible to find
the others from simple relationships.

In the present derivation, the molecules are assumed to distribute in a heat bath,
consisting of chemically inert gas whose concentration is much higher than that of
the molecules. In this case, the collisions of the molecule–molecule type may be
neglected. The molecules will decompose due to collisions with inert atoms occurring
at high temperatures. However, owing to the low concentration of molecules, the inert
gas temperature T is kept constant with a fair accuracy. The reactant molecules are
initially in the vibrational Boltzmann distribution at temperature Ti such that Ti < T .
We also assume a thermal equilibrium for the translational and rotational degrees of
freedom at T .

2 Dissociation–recombination process

Consider now the reversible chemical reaction M + X � 2A + X , where molecule
M decomposes into two atoms A in a large excess of inert gas X . Further, the species
A and X are taken as the structureless particles. Collisions between M and X result
in a fraction Mn(t) of excited molecules at the vibrational level n at time t . These
populations may be found from the master equation [1–8]:

d

dt
Mn(t) =

∑

n′
[kn′→nMn′(t) − kn→n′Mn(t)] − kn→cMn(t) + kc→n A(t)2 (1)

and
dM

dt
= −kd(t)M(t) + kr A(t)2 = −1

2

d A

dt
, (2)

where the instantaneous dissociation rate is

kd(t) =
∑

n

kn→c
Mn(t)

M(t)
(3)

The rotationally averaged rate coefficients for the level-to-level transitions are denoted
by kn→n′ , and c designates the continuum. Here kr is the sum of all the state-specific
recombination rate coefficients. All the rate coefficients are proportional to the con-
centration of the inert gas X and depend on its temperature T . Hereinafter, M(t)
designates the concentration of molecules (the sum of all populations) and A(t) is the
concentration of atoms. Since the total number of atoms is conserved, the conservation
equation is taking place. Therefore, Eq. (2) leads to the conservation law
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M(t) + A(t)

2
= M(0) (4)

Equation (2) may be rewritten to ascertain a useful relation between the reaction rate
K (t) and the instantaneous dissociation rate

K (t) = − 1

M(t)

dM

dt
= kd(t) − kr

A(t)2

M(t)
(5)

Below we are concerned with the time-dependent concentrations of the molecules and
reaction products. As follows, the concentrations depend on the internal-state popu-
lations, found from Eqs. (1) and (2). We consider these problems separately. To study
a qualitative character of solution to nonlinear equation (2), the level populations are
assumed to be known as the time-dependent functions. In particular, the concentration
of atoms may be determined from this equation. In other words, our goal is to express
A(t) in terms of the instantaneous dissociation rate.

First of all, we use Eq. (4) to get the equation for the concentration of A

dA

dt
= −2kr A(t)2 − kd(t)A(t) + 2kd(t)M(0) (6)

We have the nonlinear, differential equation with the time-dependent coefficients.
For nonlinear problems, the generally applicable method is to solve the equation
numerically. This method provides expendable solutions for one-time application that
are hard to generalize. The perturbation method is useful in a limited set of situations
where we first solve a linear problem and then search for nonlinear corrections. Here
we offer an analytical approach which amounts to the method of standard equation [9].
The basic concept of the method is to obtain an approximate solution to the differential
equation via the available exact solution to a simpler equation.

A feasible solution to the problem is quite possible if we consider the equation with
constant coefficients, which we call the “standard equation”

d As

dt
= −2κr As(t)

2 − κd As(t) + 2κdM(0) (7)

Here, subscript “s” denotes the solution to the standard equation. The dissociation–
recombination process is usually interpreted in the framework of this phenomenolog-
ical rate equation [1–6]. Remember that the observed rate coefficients κr and κd are
proportional to the concentration of the third inert bodies for the reaction occurring in
an excess of inert gas. The nonlinear, differential equation with constant coefficients
may be solved by separation of variables. Taking into account the initial condition
As(0) = 0, we find

t =
As∫

0

d A

−2κr A2 − κd A + 2κdM(0)
(8)
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The inverse of curve t = t (As) results in

As(t) = 4M(0)

1 + ξs coth (ξsκd t/2)
, (9)

where

ξs =
(
1 + 16M(0)κr

κd

) 1
2

(10)

Taking into account the conservation law, we obtain the concentration of themolecules

Ms(t) = M(0)
ξs coth (ξs κd t/2) − 1

ξs coth (ξs κd t/2) + 1
(11)

Now we are in a position to find the solution to Eq. (6). Let kd(t) be a slowly varying
function of time. By virtue of Eq. (9), solution to the input equation is of the form

Aa(t) = 4M(0)

1 + ξ(t) coth [y(t)]
, (12)

where subscript “a” is applied to the approximate solution. This expression, incorpo-
rated in Eq. (6), indicates that

ξ(t) =
(
1 + 16M(0)kr

kd(t)

) 1
2

(13)

and y(t) is a “mapping function”

y(t) = 1

2

t∫

0

ξ(t ′)kd(t ′)dt ′ (14)

Let us discuss now the condition under which the resulting solution may be applied.
To this end, we differentiate Aa(t) with respect to time and compare the result with
Eq. (6). Immediately we get

d Aa

dt
= −2kr Aa(t)

2 − kd(t)Aa(t) + 2kd(t)M(0) + z(t), (15)

where

z(t) = − Aa(t)

ξ(t)

dξ

dt

[
1 − Aa(t)

4M(0)

]
(16)

Thus, the “unnecessary term” z(t)arises. When kd(t) is time-independent, ξ̇ = 0 and
the derivatives d A/dt and d Aa/dt coincide. It is safe to assume that the approximate
solution is in fair agreement with the numerically exact solution, where the term z(t)
gives a minor contribution to the right-hand side of Eq. (15) as compared with the
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Fig. 1 Time dependence of the reduced concentration of atoms A(t)/M(0) at T = 10,000 K and Ti = 300
K in the O2 + Ar thermal dissociation reaction

leading terms. This is confirmed by numerical calculations. The expression in square
brackets decreases with increasing time from unity to ξ(∞)/(1+ ξ(∞)), i.e., remains
finite. Obviously, the quality of solution depends on the condition that the expression
before square brackets should be a perturbation parameter. The absolute value of ξ̇ /ξ

derivative increases with time, but the concentration of Aa(t) remains very low for
any length of time. At long times, the concentration of atoms tends to the finite limit,
but the ξ̇ /ξ derivative vanishes. Thus, expression (12) gives a uniform approximation
for A(t) valid for the whole range of t . These considerations are illustrated by Fig. 1,
which presents the concentrations of atoms A (divided by the initial concentration of
molecules), calculated from Eqs. (9), and (12) and obtained by numerical integration
of Eq. (6) (see Sect. 4 for details). According to numerical calculations, the significant
difference between the As(t) and A(t) concentrations decreases with reduction in
the temperature. It is noteworthy that initially, the phenomenological equation was
proposed and applied successfully to moderate temperatures.

Finally, the concentration of molecules is found from Eqs. (4) and (12)

Ma(t) = M(0)
ξ(t) coth [y(t)] − 1

ξ(t) coth [y(t)] + 1
(17)

Nowwemay determine the concentrations of reagents and products in the steady-state
condition

Aa(∞) = 4M(0)

1 + ξ(∞)
(18)

and

Ma(∞) = M(0)
ξ(∞) − 1

ξ(∞) + 1
(19)
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Fig. 2 The A(t)2/M(t)Keq ratio as a function of time at T = 10,000 K and Ti = 300 K

Then, the Aa(∞)2/Ma(∞) ratio is equal to theordinary rate-quotient law kd(∞)/kr =
Keq , in which Keq is the equilibrium constant of the reaction. This is a rigorous result
which follows directly from Eq. (1) after substitution of the Mn(∞) = ρnM(∞) limit
into this equation. A useful remark should be made on the kd(∞) value. It is easy to
see that

kd(∞) =
∑

n

kn→c(T )
Mn(∞)

M(∞)
=

∑

n

kn→c(T )ρn(T ), (20)

where ρn(T ) is the vibrational Boltzmann distribution at the heat bath temperature
T . In this limit, the instantaneous dissociation rate kd(∞) is equal to the equilibrium
dissociation rate denoted as kd . Note that kd = k̃dnX , where nX is the number density
of inert gas.

Knowing the concentrations of molecules and atoms, we may calculate their ratio.
The A2/M ratio is obtained as a function of time

Aa(t)2

Ma(t)
= kd(t)

kr

[
ξ(t)2 − 1

ξ(t)2 coth2 [y(t)] − 1

]
(21)

Apparently, the Aa(t)2/Ma(t)Keq ratio increases monotonically with time from zero
to unity (see Fig. 2). These results are in complete accordwith the conclusions available
in the literature [1,2,10–12], and are verified experimentally.

The theory developed provides analytical expressions for the concentrations of
reagents and products to calculate the reaction rate in an analytical form. Substituting
Eqs. (12) and (17) into Eq. (5) we get

K (t) = kd(t)ξ(t)2

1 + (
ξ(t)2 − 1

)
cosh2 [y(t)]

(22)
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Fig. 3 Time dependence of the reaction rate K (t) of shock-heated O2 in Ar. The heat-bath temperature is
10,000K and the initial vibrational temperature is 300 K

As follows from Eq. (22), the reaction rate is equal to the instantaneous dissociation
rate only at short times when the squared hyperbolic cosine is almost equal to unity
(when the ratio kr A(t)2/M(t) is small as compared with kd(t)). At long times, the
reaction rate tends to zero according to the exponential law

K (t) ≈ kd(∞)
4ξ(∞)2

ξ(∞)2 − 1
exp (−ξ(∞)kd(∞)t) (23)

In this limit,M(t) and A(t) tend to their equilibrium concentrations and stop to depend
on time. Therefore, the Ṁ(t) and Ȧ(t) derivatives vanish. Note that K (t) decreases
with the damping rate ξ(∞)kd(∞), where parameter ξ(∞) is found from Eqs. (13)
and (20). As follows from Fig. 3, the reaction rate increases rapidly at short times to
reach the “plateau”, where the approximate equality K (t) ≈ kd(∞) holds for a time
scale exceeding the induction period usually associated with vibrational relaxation.
Then, the reaction rate decreases exponentially to zero at long times. In this limit, the
last term of Eq. (5) comes into effect so that the A(∞)2/M(∞) ratio should be equal
to Keq in the steady-state condition.

3 Exact analytical solution to Eq. (1) in the model of strong collisions

Now we have to answer the question of how the instantaneous dissociation rate kd(t)
or the flux coefficient kd(t)M(t) vary with time. The concentration of atoms is calcu-
lated from Eq. (12) and given in terms of kd(t). In turn, the concentration of molecules
may be found from Eq. (17). The flux coefficient may be readily calculated using the
available vibrational populations. However, these may be determined from Eq. (1),
in which the species concentrations are involved as the time-dependent functions. A
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possibility to solve this problem in the analytical form depends on the fact whether
information on the concentration of reagents and products may be extracted from
an independent source. If this is the case, we may both determine the populations
under certain assumptions of the type of rate coefficients and calculate the flux coef-
ficient. The real concentrations of atoms and molecules are then estimated using the
above procedure. By this means, we ascertain more qualitatively the nature of the
dissociation–recombination process because its theory is formulated in the completely
analytical form, at least, for this particular case.

It is generally believed that the dissociation–recombination process starts with an
initial fast transient that has duration on the order of the vibrational relaxation time dur-
ing which there is a negligible change in concentrations but the populations approach
a distribution which is close to a solution of the steady-state master equation. During
the steady-state phase of the relaxation process, the evolution of the system is inter-
preted within the usual phenomenological rate equation similar to Eq. (2) but with the
constant coefficients kd and kr [1–6,10–12].

A phenomenological rate equation has been repeatedly derived from the general
master equation. It corresponds to the steady-state phase of the relaxation process.
These results may be obtained in some other way without using the t → ∞limit
but assuming that the dissociation and recombination rates depend on the vibrational
quantum number in a prescribed manner. The simplest method to derive Eq. (7) from
Eqs. (1)–(4) is to suggest that the dissociation and recombination rates depend on n
as

kn→c = kd and kc→n = ρnkr (24)

The dissociation is assumed to follow from the entire manifold of internal states
with a mean dissociation rate. When the dissociation rate is independent of n, the
recombination one is proportional to the equilibrium thermal distribution where kr is
the proportionality factor. In other words, two atoms create a molecule in each single
event of recombination. Actually, Eq. (24) is the model of strong collisions for the
dissociation–recombination process. In the framework of thismodel, the transition rate
between discrete states, n → n′, is proportional to the probability to find a molecule
in the final state n′ independent of its initial state

kn→n′ = ν∗ ρn′ , (25)

where ν∗ is the effective collision frequency of molecules M with inert atoms X .
The assumptions made allow us to greatly simplify master equation (1)

dMn

dt
= − (ν∗ + kd) Mn(t) + ρn

[
ν∗ M(t) + kr A(t)2

]
(26)

When the reaction is absent, the master equation becomes particularly simple

dMn

dt
= −ν∗ [Mn(t) − ρnM(t)] (27)
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Note that the equation of this type is called either the Krook–Bhatnager–Gross
equation in the kinetic theory of gases [13,14] or the simple relaxation approxima-
tion. Since the effective collision frequency is independent of the vibrational quantum
number, ν∗ may be determined so that the relaxation equation for the mean vibrational
energy, 〈〈E(t)〉〉, written in terms of approximation (27), coincided with the phenom-
enological one. The phenomenological relaxation equation for 〈〈E(t)〉〉 is of the form
[15]

d

dt
〈〈E(t)〉〉 = −〈〈E(t)〉〉 − 〈E〉T

τV
, (28)

where 〈E〉T is the mean thermal energy of vibrations at temperature T and τV is the
mean time of the vibrational relaxation. From Eq. (27) we get

d

dt
〈〈E(t)〉〉 = −ν∗

[〈〈E(t)〉〉 − 〈E〉T
]

(29)

Comparing Eq. (28) with (29) yields ν∗ = 1/τV .
Summing up the both sides of Eq. (26) over all n, we obtain the equation similar to

Eq. (2) butwith the constant coefficients kd and kr . Thus, the concentrations of reagents
and products are the available time-dependent functions, provided by Eqs. (9) and (11)
with κd = kd and κr = kr . It is a matter of direct verification to prove that a solution
to Eq. (26) is given by

Mn(t) = ρnMs(t) +
[
Mn(0)

M(0)
− ρn

]
M(0) exp

[
−

(
1

τV
+ kd

)
t

]
(30)

As evident from this relation, the memory of the initial condition is forgotten after the
time period on the order of τV /(1+kdτV ) and the populations relax to the equilibrium
values such as ρnMs(t) in line with the input assumption.

Equations (3) and (30) lead then to the expression for the instantaneous dissociation
rate

kd(t) = kd(∞) + [kd(0) − kd(∞)]
M(0)

Ms(t)
exp

[
−

(
1

τV
+ kd

)
t

]
(31)

Remember that kd(∞) = kd . Consider now the first case where the molecules are
initially “cold” and the temperature of the inert gas X increases instantaneously up
to high T (as, e.g., in shock waves). The initial value of Mn(0)/M(0) is provided by
the vibrational Boltzmann distribution at the initial temperature Ti . We also assume
a thermal equilibrium for the translational and rotational degrees of freedom of the
molecules at T . Then the initial dissociation rate obeys the equation

kd(0) =
∑

n

ρn(Ti )kn→c(T ) (32)

In this case, kd(∞) is higher than kd(0) and the instantaneous dissociation rate
increases monotonously from kd(0) to kd(∞). Due to collisions between the species
M and X , the molecules gain internal energy from the heat bath over a period of time,
i.e., the system relaxes by collisional T → V energy transfer.
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Fig. 4 Typical time evolution of the reduced flux coefficient R(t)/M(0)

Let us consider the case, where the inert-gas heat bath is initially cold (and remains
cold at temperature T ) while the internal energy of the molecules is instantaneously
raised by a laser pulse of short duration. Now the vibrational degrees of freedom are
characterized by the temperature Ti so that Ti > T . Obviously, kd(0) exceeds kd(∞)

and the instantaneous dissociation rate decreases monotonously from kd(0) to kd(∞).
Now the molecules lose internal energy to the heat bath over a period of time, so that
the relaxation consists of the V → T energy transfer.

We denote the flux coefficient kd(t)M(t) by R(t). Hence, R(t) is of the form

R(t) = kd(∞)Ms(t) + [kd(0) − kd(∞)]M(0) exp

[
−

(
1

τV
+ kd(∞)

)
t

]
(33)

The behavior of R(t) with time is plotted in Fig. 4. Let the heat bath temperature
differ slightly from the initial one of the vibrational degrees of freedom. Then the flux
coefficient decreases exponentially from kd(0)M(0) to zero during the time roughly
equal to that of the vibrational relaxation. In this case, the Mn(t)/M(t) distribution is
not very different from the initial thermal distribution.When T >> Ti , this distinction
is considerable. The high-lying energy levels are excited by strong collisions and R(t)
starts to increase sharply with time to reach a maximum within the time period on
the order of τV /(1+ kdτV ). At long times, the flux coefficient tends to its asymptotic
limit.

4 System

Asan illustration,we consider the dissociation–recombinationprocess of shock-heated
oxygen molecules, highly diluted in argon heat bath. The parameters of the model
system are the ones used by Kiefer and Hajduk [16] for the O2 + Ar and O + O +
Ar collisions. The vibrational bias parameter is λ = 3.5. The initial temperature

123



J Math Chem (2015) 53:1313–1324 1323

is 300K and the temperature of the heat bath is 10,000K. We set both the argon
concentration to 1.28×1017 cm−3 to agreewith the shock-tube study ofWray [17] and
the initial concentration ofmolecules to 2.56×1015 cm−3. Themolecule ismodeled as
a truncated harmonic oscillator with 27 vibrational levels spaced by 2255.7K and the
dissociation energy is 58,920K. The calculated values for the necessary parameters
are kd = 7.0 × 105 s−1 and kr = 3.5 × 10−20 cm3 s−1. The frequency of collisions
is 1.64 × 108 s−1 and the mean vibrational time equals 1.76 µs of the Camac study
[18].

5 Summary and conclusions

In the present work, we have analyzed the M + X � 2A + X reaction, derived the
analytical expressions for the concentrations of molecules and atoms, and determined
the reaction rate, functionally dependent on the instantaneous dissociation rate. Com-
paring the results of Eqs. (12), (17), (21) and (22) with numerically exact calculations
attests that the uniform approximation provides the highly accurate values and is inde-
pendent of many aspects of interest, such as the functional kd(t) form, the damping
rates of this function, and the input parameters. In all the cases studied, a relative
difference was no more than 0.5%. Theoretically, the above results are a successful
example of solving the nonlinear, differential equation of type (6) by the method of
standard equation.

The main interest of our study was to express the species concentrations through
the instantaneous dissociation rate. When the latter is known as a function of time,
the theory allows a comparison between the calculated and the experimental values.
Actually, an inverse problem may be stated. Based on physical considerations, we
give kd(t) as a function of time and of several fitting parameters whose values are
then determined using experimental species concentrations. Planning these studies in
future, we have proposed an instructive example in Sect. 3, where the functional form
of kd(t) was found by means of a simple physical model. Within this model of strong
collisions, we have presented the exact, analytical solution to the master equation.

An old topic of chemical kinetics concerns the conditions under which a phenom-
enological rate equation is obeyed. In this connection it is useful to pay attention to the
difference in solutions provided by Eqs. (9) and (12). As follows from the expression
for As(t), the concentration of atoms only increases with time to reach from below
the equilibrium As(∞) value. The effect of decreasing atom concentration, following
the depletion of non-decomposed molecules, is fully absent in the phenomenological
model. For the general case, the time-dependent concentration of atoms may have a
maximum. Actually, this effect is described by solution to Aa(t), because the con-
centration of atoms follows a temporal change in the dissociation rate. According to
numerical calculations, this behavior is typical of the case where Ti >> T and the
equilibrium constant for the reaction is not too large.
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